On Strong Consistency of a Class of Recursive Stochastic Newton-Raphson Type Algorithms with Application to Robust Linear Dynamic System Identification
نویسندگان
چکیده
The recursive stochastic algorithms for estimating the parameters of linear discrete-time dynamic systems in the presence of disturbance uncertainty has been considered in the paper. Problems related to the construction of min-max optimal recursive algorithms are demonstrated. In addition, the robustness of the proposed algorithms has been addressed. Since the min-max optimal solution cannot be achieved in practice, an approximate optimal solution based on a recursive stochastic NewtonRaphson type procedure is suggested. The convergence of the proposed practically applicable robustified recursive algorithm is established theoretically using the martingale theory. Both theoretical and experimental analysis related to the practical robustness of the proposed algorithm are also included.
منابع مشابه
The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملRobust inter and intra-cell layouts design model dealing with stochastic dynamic problems
In this paper, a novel quadratic assignment-based mathematical model is developed for concurrent design of robust inter and intra-cell layouts in dynamic stochastic environments of manufacturing systems. In the proposed model, in addition to considering time value of money, the product demands are presumed to be dependent normally distributed random variables with known expectation, variance, a...
متن کاملMATLAB Software for Recursive Identification of Systems With Output Quantization – Revision 1 Torbjörn
This reports is intended as a users manual for a package of MATLAB scripts and functions, developed for recursive identification of discrete time nonlinear Wiener systems, where the static output nonlinearity is a known arbitrary quantization function, not necessarily monotone. Wiener systems consist of linear dynamics in cascade with a static nonlinearity. Hence the systems treated by the soft...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کامل